La tabla periódica



TABLA PERIODICA

ANALISIS DE LOS ELEMENTOS DE LA TABLA PERIODICA

Grupo I a: los metales alcalinos

Los metales alcalinos, litio (li), sodio (na), potasio (k), rubidio (rb), cesio (cs) y francio (fr), son metales blandos de color gris plateado que se pueden cortar con un cuchillo. Presentan densidades muy bajas y son buenos conductores de calor y la electricidad; reaccionan de inmediato con el agua, oxigeno y otras substancias químicas, y nunca se les encuentra como elementos libres (no combinados) en la naturaleza. Los compuestos típicos de los metales alcalinos son solubles en agua y están presentes en el agua de mar y en depósitos salinos. Como estos metales reaccionan rápidamente con él oxigeno, se venden en recipientes al vacío, pero por lo general se almacenan bajo aceite mineral queroseno. En este grupo los más comunes son el sodio y el potasio.

Grupo II a: los metales alcalinotérreos

Entre los elementos del grupo ii a. Se encuentran el berilio (be), magnesio (mg), calcio (ca), estroncio (sr), bario (ba) y el radio (ra). Estos metales presentan puntos de fusión mas elevados que los del grupo anterior, sus densidades son todavía mas bajas, pero son algo mas elevadas que la de los metales alcalinos comparables. Son menos reactivos que los metales alcalinos. Todos los metales alcalinotérreos poseen dos electrones de valencia y forman iones con doble carga positiva (2 +).

El calcio ocupa el quinto lugar en abundancia; alrededor del 4 % de la corteza terrestre es calcio o magnesio. El carbonato de calcio es el compuesto que forma la greda, la piedra caliza y la calcita. La cal, el cemento, los huesos y los depósitos de conchas marinas son ricos en calcio. El magnesio metálico se emplea para polvo de iluminación instantánea, bombillas fotográficas, y en aleaciones de aluminio, en especial para aviones y proyectiles. Casi todo el quot; agua dura quot; contiene iones calcio y magnesio, el berilio es costoso, pero las aleaciones de este metal se emplean en herramientas que no producen chispas, en resortes y electrodos para soldadura por puntos. El berilio y sus compuestos son tóxicos. Los compuestos de bario son extensamente en pigmentos blancos. El radio es radiactivo.

Grupo III a:

El primer elemento del grupo iii a es el boro (b), un metaloide con un punto de fusión muy elevado y en el que predominan las propiedades no metálicas. Los otros elementos que comprenden este grupo son: aluminio (al), galio (ga), indio (in), y talio (tl), que forman iones con una carga triple positiva (3 +). La densidad y las características metálicas aumentan conforme se incrementa él numero atómico de este grupo.

El boro no sé encuentra libre en la naturaleza, pero es el elemento fundamental del bórax. Este compuesto se emplea como suavizante de agua y en agente de limpieza. Desde el punto de vista químico, el boro se comporta mas como el metaloide silicio que como el aluminio metálico.

El aluminio se encuentra adyacente a dos metaloides en la tabla periódica, pero en sus propiedades predominan las de tipo metálico. El aluminio es un buen conductor de calor y la electricidad, y es un metal dúctil que se emplea en alambres ligeros. Es el metal que más abunda en la corteza terrestre (8 %), pero es demasiado activo para encontrarse libre en la naturaleza. Se utiliza por ejemplo en aeronaves, alambre de transmisión eléctrica, motores, automóviles, utensilios de cocina, pigmentos para pinturas y papel aluminio.

El galio se funde a 29.8 c, solo un poco arriba de la temperatura ambiente, la demanda de este metal va en aumento; tiene aplicaciones nuevas en semiconductores de estado sólido para computadores y celdas solares. El indio es muy blando; entre otras cosas, se emplea en transistores y recubrimientos de espejos. El talio y sus compuestos son tóxicos.

Grupo IV a: la familia del carbono.

El carácter metálico aumenta de arriba hacia abajo en el caso de los elementos carbono (c), silicio (si), germanio (ge), estaño (sn), y plomo (pb). Las diferencias en la posición cristalina de los átomos de carbono explican la dureza resbaladiza del grafito negro. A las formas distintas de un mismo elemento, como estas, se les llama alótropos. A mediados de la década de 1980 sé descubrió una nueva forma alotrópica del carbono, con 60 átomos dispuestos en un patrón parecido a la superficie de un balón de fútbol a estas esferas de carbono 60 se les suele dar el nombre de buck y bolas. El carbono vegetal es una forma alotrópica no cristalina (o quizás microcristalina) del carbono; no presenta un patrón atómico definido. Además de los dos óxidos de este elemento, dióxido de carbono (co2) y monóxido de carbono (co) el carbón esta presente en mas de 8 millones de compuestos. Entre los compuestos orgánicos (que contienen carbono) están las sustancias naturales presentes en todos los seres vivos. Todos los productos del petróleo y los sintéticos que van de los plásticos a las fibras y medicamentos, son también compuestos orgánicos.

El silicio, el segundo miembro de este grupo, es un metaloide en el que predominan las propiedades no metálicas. Es el segundo elemento más abundante en la corteza terrestre (26%) pero no se encuentra como elemento libre, la arena de cuarzo, que es dióxido de silicio, se emplea en la producción de vidrio y cemento. El silicio posee un lustre metálico gris. Este metaloide ha ejercido un impacto enorme en la tecnología moderna, pues se emplea silicio extremadamente puro en la manufactura de semiconductores y chips de computadora. El carborundo es carburo de silicio, un compuesto de silicio y carbono que se utiliza en herramientas de corte y esmerilado. El germanio es también un semiconductor metaloide y participa en miles de aplicaciones electrónicas.

Grupo V a:

Entre los elementos del grupo v a están los no metales nitrógeno (n) y fósforo (p), los metaloides arsénico (as) y antimonio (sb), y el metal pesado bismuto (bi). Como se ve, en este grupo hay un cambio total en apariencia y propiedades de arriba hacia abajo.

El nitrógeno gaseoso diatómico (n2) constituye el 78 % del aire en volumen. Tanto el nitrógeno como el fósforo son fundamentales para la vida. El nitrógeno es un elemento indispensable para los aminoácidos que componen todas las proteínas. Las moléculas de nitrógeno del aire no son muy reactivas, pero ciertas bacterias del suelo pueden "fijar" el nitrógeno al convertir el elemento en amoniaco, que en esa forma puede ser incorporado por las raíces de las plantas. En escala industrial, el nitrógeno y el hidrógeno gaseosos se combinan para producir amoniaco gaseoso, nh3 que se utiliza como fertilizante y también en la manufactura de ácido nítrico y diversos explosivos.

El fósforo es un sólido reactivo que no se encuentra libre en la naturaleza. Una de las formas alotrópicas del fósforo es un material rojo púrpura no cristalino que alguna vez se utilizo para fabricar cerillas. Otra forma alotrópica, de formula p4 presentan una apariencia cerosa cristalina de color amarillento y es preciso mantenerla bajo el agua para evitar su combustión espontánea con el oxigeno del aire. El fósforo se emplea en la fabricación de cerillas, bombas de humo, balas trazadoras plaguicidas y otros muchos productos. Este elemento es fundamental para todas las células vegetales y animales.

El arsénico es un metaloide en el que predominan las propiedades no metálicas. Tanto el elemento como sus compuestos son tóxicos, en parte porque el primero puede imitar casi por completo el comportamiento químico del fósforo, pero el arsénico es incapaz de funcionar como el fósforo en los tejidos vivos, y tiene resultados letales. Ciertos insecticidas y funguicidas agrícolas contienen arsénico. El elemento también se utiliza en aplicaciones de semiconductores e en laseres.

El antimonio es un metaloide en que predominan las propiedades metálicas. El elemento es quebradizo y escamoso, con lustre metálico. Se emplea para aumentar la dureza del plomo destinado a las baterías de automóvil, en cubiertas para cable y en balas trazadoras. Ciertos compuestos de antimonio se usan en pigmentos para pinturas, en esmaltes cerámicos y en agentes para incombustibilizar.

El bismuto es el único metal verdadero en este grupo. Se utiliza para hacer aleaciones como el peltre, y aleaciones de bajo punto de fusión que se emplean en fusibles eléctricos y sistemas de aspersión contra incendios. Ciertos compuestos de bismuto se usan en polvos faciales y cosméticos.

Grupo VI a:

Los elementos del grupo vi a, conocidos como la familia del grupo del oxigeno, comprenden al oxigeno (o), azufre (s), selenio (se), telurio (te) y polonio (po). Aunque todos ellos tienen seis electrones de valencia, sus propiedades varían de no metálicas a metálicas en cierto grado, conforme aumenta el numero atómico.

El oxigeno gaseoso, o2 es fundamental para la vida; es necesario para quemar los combustibles fósiles y obtener así energía, y se requiere durante el metabolismo urbano para quemar carbohidratos. En ambos procesos, los productos secundarios son dióxido de carbono y agua. El oxigeno constituye el 21 % en volumen del aire y el 49.5 % en peso de la corteza terrestre.

La otro forma alotrópica del oxigeno es el ozono, cuya formula es o3 es mas reactivo que el oxigeno ordinario y se puede formar a partir de oxigeno en un arco eléctrico, como el descargador a distancia de un motor eléctrico, también se puede producir ozono por la acción de la luz ultravioleta sobre el oxigeno; esto explica el aroma " fresco del aire durante las tormentas eléctricas".

El azufre es el segundo elemento no metal del grupo. A temperatura ambiente es un sólido amarillo pálido que se encuentra libre en la naturaleza. Lo conocían los antiguos y se le menciona en el libro del génesis como piedra de azufre. Las moléculas de azufre contienen ocho átomos de azufre conectados a un anillo; su formula es s8 . El azufre tiene una importancia especial en la manufactura de neumáticos de hule y ácido sulfúrico, h2so4 . Otros compuestos de azufre son importantes para blanquear frutos y granos.

El selenio es un no metal que presenta interesantes propiedades y usos. La conductividad de este elemento aumenta con la intensidad de la luz. A causa de esta fotoconductividad, el selenio se a utilizado en los medidores de luz para cámaras fotográficas y en fotocopiadoras, pero la preocupación que origina su toxicidad ha hecho que disminuya su uso. El selenio también puede convertir la corriente eléctrica alterna en corriente directa; se ha utilizado en rectificadores, como los convertidores que se usan en los radios y grabadores portátiles, y en herramientas eléctricas recargables. El color rojo que el selenio imparte al vidrio lo hace útil en la fabricación de lentes para señales luminosas.

El telurio, tiene aspecto metálico, pero es un metaloide en el que predominan las propiedades no metálicas. Se emplea en semiconductores y para endurecer las placas de los acumuladores de plomo y el hierro colado. Se presenta en la naturaleza en diversos compuestos, pero no es abundante. El polonio es un elemento radiactivo poco común que emite radiación alfa y gama; su manejo es muy peligroso. Los usos de este elemento se relacionan con su radiactividad, y fue descubierto por Marie curie, quien le dio este nombre en honor a su natal Polonia.

Grupo VII a: los halógenos.

Comprenden el fluor (f), cloro (cl), bromo (br), yodo (i), y astato (at). El nombre de la familia halógeno provienen de las palabras griegas que significan "formadores de sales". Cada átomo de halógeno tiene siete electrones de valencia. Como elementos, los halógenos son todos diatomicos, tienen dos a tomos por molécula y son demasiado reactivos como para encontrarse libres en la naturaleza.

El primer halógeno, el fluor es un gas amarillo pálido, que es el elemento con mas carácter no metálico de todos. Tienen una fuerte tendencia a ganar un electrón para formar iones fluoruro, f . Tanto la madera como el hule arden en forma espontánea en fluor gaseoso. El fluor se emplea en la producción de compuestos con carbono llamados fluorocarbonos, como el freon-12, ccl2f2, que se utiliza como refrigerante en aparatos de aire acondicionado. El "resina anti-adherente" ó "fluoropolímero" (la empresa me prohibió poner el nombre comercial) es un fluorocarbono que es un polímero; tiene unidades moleculares de dos átomos de carbono y cuatro átomos de fluor que se repiten miles de veces en largas cadenas. Los compuestos de fluor también se utilizan para prevenir la caries dental y en ciertos lubricantes.

El cloro es un gas amarillo verdoso de olor irritante, que reacciona con casi todos los elementos. En concentraciones elevadas es muy venenoso, pero es bajas concentraciones puede salvar vidas: se emplea para purificar el agua potable, se emplea en la producción de papel, textiles, blanqueadores, medicamentos, insecticidas, pinturas, plásticos y muchos otros productos de consumo.

El bromo es el único elemento no metálico que es liquido a temperatura ambiente. Este liquido reactivo de color rojo sangre con un vapor rojo, es picante y venenoso; se debe manejar con extremo cuidado. El elemento se obtiene principalmente procesando salmuera extraída de los pozos de Arkansas y michigan. también se puede obtener bromo del agua de mar, pero esto ya no constituye una fuente importante del elemento. El bromo se utiliza en la producción de sustancias químicas para fotografía, colorantes y retardantes de flama, y en la manufactura de un amplia variedad de otras sustancias químicas, incluso productos farmacéuticos.

A temperatura ambiente el yodo es un sólido cristalino de color gris metálico. Cuando se calienta, el yodo sólido se sublima, es decir se transforma, directamente del estado sólido al gaseoso sin pasar por el estado liquido. El vapor de yodo presenta un hermoso color violeta brillante. El yodo que es menos abundante que otros halógenos, se obtiene de pozos de salmuera que hay en los campos petroleros de California y luisiana. El elemento esta presente también en ciertos vegetales marinos, como las algas, los compuestos de yodo se utilizan en productos químicos para fotografía y también en ciertos medicamentos. El cuerpo humano necesita un poco de yodo para elaborar la hormona tiroxina.

Todos los isótopos del astato son radioactivos. Se cree que la cantidad total de este elemento, existe en la corteza terrestre, es menor que 30 gramos (una onza). Muestras minúsculas de este inestable elemento se sintetizaron por primera vez en la universidad de California, berkeley, en 1940.

Grupo VIII a: los gases nobles.

Esta familia incluye al helio (he), neon (ne), argon (ar), criptón (kr), xenón (xe) y radon (rn). Los gases nobles existen en forma de átomos gaseosos monoatómicos (solos) que no tienden a participar en reacciones con otros elementos.

Todos loa gases nobles poseen un nivel energético externo lleno por completo de electrones (dos en el helio y ocho en todos los demás). Esta distribución estable de electrones explica la naturaleza no reactiva de estos elementos. Alrededor del 1 % de la atmósfera de la tierra es argon, y los otros gases nobles están presentes en cantidades muy pequeñas. A excepción del helio, que se extrae de pozos de gas natural, estos elementos se separan del aire licuado.

Durante la década de 1890, el químico escocés Sir William Ramsay y sus colaboradores, descubrieron la existencia de todos estos elementos excepto el helio y el radón. Cuando Janssen, astrónomo, empleaba un espectroscopio par estudiar un eclipse de sol en 1868, observo una nueva línea en el espectro. Se concluyo que el sol tenia un elemento aun no descubierto que mas tarde recibió el nombre de helio, derivado de la palabra griega helios, que significa el "sol". El primer descubrimiento de la presencia de helio en la tierra tuvo lugar en 1895, cuando Sir William Ramsay encontró una muestra de mineral de uranio producía helio gaseoso. El radón es un gas radioactivo descubierto en 1900 por Friedrich Dorn, físico quien encontró que se producía este elemento durante la descomposición radioactiva del elemento radio.

Debido a su baja densidad u naturaleza no inflamable, el helio se utiliza para inflar globos y dirigibles (zeppelines), y para mantener bajo presión el combustible liquido de los cohetes saturno. La propiedad que distingue a los gases nobles como grupo, es su calidad de "inertes". Por ejemplo, el helio y el argon se emplean en la soldadura del arco y en procesos metalúrgicos, para evitar la reacción de los materiales con el oxigeno y el nitrógeno del aire. Las bombillas de luz y los tubos fluorescentes se llenan con una mezcla de argon y nitrógeno, que provee una atmósfera inerte para prolongar la vida del filamento. El criptón es mas costoso, pero se utiliza para aumentar la eficiencia y brillantes de ciertas bombillas de lámpara de mano y de aditamentos de destello electrónico que se emplea en fotografía. La brillante luz naranja-rojiza de los anuncios de neon se produce cuando se hace pasar una corriente eléctrica a través de un tubo que contiene gas neon a baja presión. La naturaleza no reactiva de los gases nobles los hace muy valiosos.

Metales de transición.

Los metales de transición se localizan en la parte central de la tabla periódica y se les identifica con facilidad mediante un numero romano seguido de la letra "b" en muchas tablas. No hay que olvidar, sin embargo, que ciertas tablas periódicas emplean un sistema distinto de rótulos, en el que los primeros grupos de metales de transición están marcados como grupos "a" y los dos últimos grupos de metales de transición se identifican como grupos "b". Otras tablas no emplean la designación de "a" o "b".

En general, las propiedades de los metales de transición son bastantes similares. Estos metales son mas quebradizos y tienen puntos de fusión y ebullición mas elevados que los otros metales. Las densidades, puntos de fusión y puntos de ebullición de los metales de transición aumentan primero y luego disminuyen dentro de cada periodo, conforme aumenta el numero atómico. Esta tendencia es mas notoria en los metales de transición del sexto periodo. Los metales de transición son muchos menos reactivos que los metales alcalinos y alcalinotérreos. Así, aunque los metales alcalinos, como el sodio o el potasio, nunca se encuentran libres en la naturaleza, si se ha podido encontrar muestras relativamente puras de varios metales de transición, como oro, plata, hierro y manganeso.

Los metales de transición pueden perder dos electrones de valencia del subnivel s mas externo, además de electrones d retenidos con poco fuerza en el siguiente nivel energético mas bajo. Así un metal de transición en particular, puede perder un numero variable de electrones para formar iones positivos con cargas distintas. Por ejemplo, el hierro pueden formar el ion fe ²+ o el Ion Fe³+ se dice que el hierro tienen números de oxidación +2 y +3. Muchos compuestos de metales de transición presentan un colorido brillante gracias a un numero variable de electrones no apareados.

El cobre, la plata y el oro se les llama metales de acuñación. Los tres son buenos conductores de calor y electricidad. El cobre tiene un color rojizo característico, que poco a poco se oscurece conforme reacciona el metal con el oxigeno y los compuestos de azufre del aire. El cobre se emplea de manera extensa en aplicaciones eléctricas, monedas, tubería para agua y en aleaciones muy conocidas como el latón, el bronce y la plata sterling.

La plata con un brillante lustre metálico, es el mejor conductor tanto de calor como de la electricidad. Se emplea en monedas, joyería, contactos eléctricos, circuitos impresos, espejos, baterías, y productos químicos para fotografía. El oro es el mas maleable y dúctil de los metales. Es blando, pero por lo general contiene cantidades pequeñas de otros metales para hacer aleaciones que son mas resistentes. El oro no reacciona con el aire ni con la mayor parte de las sustancias químicas.

Entre otros metales de transición familiares están el cromo, hierro cobalto, níquel y zinc, del cuarto periodo de la tabla periódica. Estos metales se emplean mucho en diversas herramientas y en aplicaciones relacionadas. El hierro es el cuarto elemento mas abundante y es el metal menos costoso. Las aleaciones del hierro, conocidas como acero, contienen cantidades pequeñas de metales como cromo, manganeso y níquel, que le dan resistencia, dureza y durabilidad. El hierro que esta cubierto con una delgada capa de zinc se dice que esta galvanizado. Algo así como la tercera parte de todo el zinc que se produce de emplea para galvanizar alambre, clavos y metal laminado. El zinc es importante en la producción de latón, pilas secas y fundiciones a troquel para objetos automotrices y de ferretería.

Metales de transición internos.

Las dos filas de la parte inferior de la tabla periódica se conocen como metales de transición internos. Localiza el lantano con el numero atómico 57. La serie de elementos que siguen al lantano (los elementos con numero atómico del 58 al 71) se conocen como los lantánidos. Estos elementos tienen dos electrones externos en el subnivel 6s, mas electrones adicionales en el subnivel 4f. De manera similar, la serie de elementos que siguen al actinio (los elementos con numero atómico del 90 al 103) se conocen como actínidos, que tienen dos electrones externos en el subnivel 7s, mas electrones adicionales en el subnivel 5f. En el pasado, a los elementos de transición internos se les llamaba "tierras raras", pero esta no era una buena clasificación, pues la mayor parte no son tan raros como algunos otros elementos son, sin embargo muy difícil de separar.

Los lantánidos y actínidos poseen subniveles f parcialmente ocupados. Tienen propiedades tan similares que resulta difícil separarlos químicamente, aunque los métodos mas nuevos han permitido bajar los costos de purificación. Estos metales, a diferencia de los metales de transición, son blandos y maleables. Se emplean en piedras de encendedores de cigarrillos, lámparas de arco de carbono, laseres, agentes colorantes para el vidrio y compuestos que producen el intenso color rojo que se requiere para los cinescopios de televisión.

Elementos transuránicos.

El uranio, con el numero atómico 92, pertenece a la serie de los actínidos y tiene mas protones que cualquier otro elemento presente en la naturaleza. En 1940 se sintetizo un nuevo elemento con 93 protones en la universidad de California en berkeley. Este elemento, llamado neptunio, es el primer miembro de los elementos sintéticos con números atómicos mayores de 92. A estos elementos se les llama transuránicos, y todos ellos son radioactivos. El plutonio también se sintetizo en 1940; en la actualidad se produce como un producto secundario de reactores nucleares. Hasta ahora se han producido 16 elementos transuránicos; algunos de ellos son bastante estables, en tanto que otros sufren con facilidad una desintegración radioactiva. Los nombres de los elementos del 95 al 103 se derivaron de lugares y científicos importantes. Los elementos del 95, 97 y 98 recibieron su nombre en honor de América, berkeley y California, respectivamente. Los elementos con números atómicos 96, 99, 100, 101, 102, y 103 fueron bautizados, respectivamente, en honor a los Marie Curie, Pierre Curie, Albert Einstein, Enrico Fermi, Mendeleiev, Alfred Nobel y Ernest Orlando Lawrence (inventor del ciclotrón). En 1994 se propuso formalmente que el elemento 106 se llamara seaborgio (sg) en honor de Glenn Theodore Seaborg, por su trabajo con los elementos transuránicos.

El equipo que se requiere para producir nuevos elementos transuránicos se ha vuelto mas complejo, pero no hay razón para dudar de que sinteticen elementos adicionales, o de que se encuentren nuevos usos para los elementos naturales y sintéticos.

TABLA PERIODICA

ANALISIS DE LOS ELEMENTOS DE LA TABLA PERIODICA

Grupo I a: los metales alcalinos

Los metales alcalinos, litio (li), sodio (na), potasio (k), rubidio (rb), cesio (cs) y francio (fr), son metales blandos de color gris plateado que se pueden cortar con un cuchillo. Presentan densidades muy bajas y son buenos conductores de calor y la electricidad; reaccionan de inmediato con el agua, oxigeno y otras substancias químicas, y nunca se les encuentra como elementos libres (no combinados) en la naturaleza. Los compuestos típicos de los metales alcalinos son solubles en agua y están presentes en el agua de mar y en depósitos salinos. Como estos metales reaccionan rápidamente con él oxigeno, se venden en recipientes al vacío, pero por lo general se almacenan bajo aceite mineral queroseno. En este grupo los más comunes son el sodio y el potasio.

Grupo II a: los metales alcalinotérreos

Entre los elementos del grupo ii a. Se encuentran el berilio (be), magnesio (mg), calcio (ca), estroncio (sr), bario (ba) y el radio (ra). Estos metales presentan puntos de fusión mas elevados que los del grupo anterior, sus densidades son todavía mas bajas, pero son algo mas elevadas que la de los metales alcalinos comparables. Son menos reactivos que los metales alcalinos. Todos los metales alcalinotérreos poseen dos electrones de valencia y forman iones con doble carga positiva (2 +).

El calcio ocupa el quinto lugar en abundancia; alrededor del 4 % de la corteza terrestre es calcio o magnesio. El carbonato de calcio es el compuesto que forma la greda, la piedra caliza y la calcita. La cal, el cemento, los huesos y los depósitos de conchas marinas son ricos en calcio. El magnesio metálico se emplea para polvo de iluminación instantánea, bombillas fotográficas, y en aleaciones de aluminio, en especial para aviones y proyectiles. Casi todo el quot; agua dura quot; contiene iones calcio y magnesio, el berilio es costoso, pero las aleaciones de este metal se emplean en herramientas que no producen chispas, en resortes y electrodos para soldadura por puntos. El berilio y sus compuestos son tóxicos. Los compuestos de bario son extensamente en pigmentos blancos. El radio es radiactivo.

Grupo III a:

El primer elemento del grupo iii a es el boro (b), un metaloide con un punto de fusión muy elevado y en el que predominan las propiedades no metálicas. Los otros elementos que comprenden este grupo son: aluminio (al), galio (ga), indio (in), y talio (tl), que forman iones con una carga triple positiva (3 +). La densidad y las características metálicas aumentan conforme se incrementa él numero atómico de este grupo.

El boro no sé encuentra libre en la naturaleza, pero es el elemento fundamental del bórax. Este compuesto se emplea como suavizante de agua y en agente de limpieza. Desde el punto de vista químico, el boro se comporta mas como el metaloide silicio que como el aluminio metálico.

El aluminio se encuentra adyacente a dos metaloides en la tabla periódica, pero en sus propiedades predominan las de tipo metálico. El aluminio es un buen conductor de calor y la electricidad, y es un metal dúctil que se emplea en alambres ligeros. Es el metal que más abunda en la corteza terrestre (8 %), pero es demasiado activo para encontrarse libre en la naturaleza. Se utiliza por ejemplo en aeronaves, alambre de transmisión eléctrica, motores, automóviles, utensilios de cocina, pigmentos para pinturas y papel aluminio.

El galio se funde a 29.8 c, solo un poco arriba de la temperatura ambiente, la demanda de este metal va en aumento; tiene aplicaciones nuevas en semiconductores de estado sólido para computadores y celdas solares. El indio es muy blando; entre otras cosas, se emplea en transistores y recubrimientos de espejos. El talio y sus compuestos son tóxicos.

Grupo IV a: la familia del carbono.

El carácter metálico aumenta de arriba hacia abajo en el caso de los elementos carbono (c), silicio (si), germanio (ge), estaño (sn), y plomo (pb). Las diferencias en la posición cristalina de los átomos de carbono explican la dureza resbaladiza del grafito negro. A las formas distintas de un mismo elemento, como estas, se les llama alótropos. A mediados de la década de 1980 sé descubrió una nueva forma alotrópica del carbono, con 60 átomos dispuestos en un patrón parecido a la superficie de un balón de fútbol a estas esferas de carbono 60 se les suele dar el nombre de buck y bolas. El carbono vegetal es una forma alotrópica no cristalina (o quizás microcristalina) del carbono; no presenta un patrón atómico definido. Además de los dos óxidos de este elemento, dióxido de carbono (co2) y monóxido de carbono (co) el carbón esta presente en mas de 8 millones de compuestos. Entre los compuestos orgánicos (que contienen carbono) están las sustancias naturales presentes en todos los seres vivos. Todos los productos del petróleo y los sintéticos que van de los plásticos a las fibras y medicamentos, son también compuestos orgánicos.

El silicio, el segundo miembro de este grupo, es un metaloide en el que predominan las propiedades no metálicas. Es el segundo elemento más abundante en la corteza terrestre (26%) pero no se encuentra como elemento libre, la arena de cuarzo, que es dióxido de silicio, se emplea en la producción de vidrio y cemento. El silicio posee un lustre metálico gris. Este metaloide ha ejercido un impacto enorme en la tecnología moderna, pues se emplea silicio extremadamente puro en la manufactura de semiconductores y chips de computadora. El carborundo es carburo de silicio, un compuesto de silicio y carbono que se utiliza en herramientas de corte y esmerilado. El germanio es también un semiconductor metaloide y participa en miles de aplicaciones electrónicas.

Grupo V a:

Entre los elementos del grupo v a están los no metales nitrógeno (n) y fósforo (p), los metaloides arsénico (as) y antimonio (sb), y el metal pesado bismuto (bi). Como se ve, en este grupo hay un cambio total en apariencia y propiedades de arriba hacia abajo.

El nitrógeno gaseoso diatómico (n2) constituye el 78 % del aire en volumen. Tanto el nitrógeno como el fósforo son fundamentales para la vida. El nitrógeno es un elemento indispensable para los aminoácidos que componen todas las proteínas. Las moléculas de nitrógeno del aire no son muy reactivas, pero ciertas bacterias del suelo pueden "fijar" el nitrógeno al convertir el elemento en amoniaco, que en esa forma puede ser incorporado por las raíces de las plantas. En escala industrial, el nitrógeno y el hidrógeno gaseosos se combinan para producir amoniaco gaseoso, nh3 que se utiliza como fertilizante y también en la manufactura de ácido nítrico y diversos explosivos.

El fósforo es un sólido reactivo que no se encuentra libre en la naturaleza. Una de las formas alotrópicas del fósforo es un material rojo púrpura no cristalino que alguna vez se utilizo para fabricar cerillas. Otra forma alotrópica, de formula p4 presentan una apariencia cerosa cristalina de color amarillento y es preciso mantenerla bajo el agua para evitar su combustión espontánea con el oxigeno del aire. El fósforo se emplea en la fabricación de cerillas, bombas de humo, balas trazadoras plaguicidas y otros muchos productos. Este elemento es fundamental para todas las células vegetales y animales.

El arsénico es un metaloide en el que predominan las propiedades no metálicas. Tanto el elemento como sus compuestos son tóxicos, en parte porque el primero puede imitar casi por completo el comportamiento químico del fósforo, pero el arsénico es incapaz de funcionar como el fósforo en los tejidos vivos, y tiene resultados letales. Ciertos insecticidas y funguicidas agrícolas contienen arsénico. El elemento también se utiliza en aplicaciones de semiconductores e en laseres.

El antimonio es un metaloide en que predominan las propiedades metálicas. El elemento es quebradizo y escamoso, con lustre metálico. Se emplea para aumentar la dureza del plomo destinado a las baterías de automóvil, en cubiertas para cable y en balas trazadoras. Ciertos compuestos de antimonio se usan en pigmentos para pinturas, en esmaltes cerámicos y en agentes para incombustibilizar.

El bismuto es el único metal verdadero en este grupo. Se utiliza para hacer aleaciones como el peltre, y aleaciones de bajo punto de fusión que se emplean en fusibles eléctricos y sistemas de aspersión contra incendios. Ciertos compuestos de bismuto se usan en polvos faciales y cosméticos.

Grupo VI a:

Los elementos del grupo vi a, conocidos como la familia del grupo del oxigeno, comprenden al oxigeno (o), azufre (s), selenio (se), telurio (te) y polonio (po). Aunque todos ellos tienen seis electrones de valencia, sus propiedades varían de no metálicas a metálicas en cierto grado, conforme aumenta el numero atómico.

El oxigeno gaseoso, o2 es fundamental para la vida; es necesario para quemar los combustibles fósiles y obtener así energía, y se requiere durante el metabolismo urbano para quemar carbohidratos. En ambos procesos, los productos secundarios son dióxido de carbono y agua. El oxigeno constituye el 21 % en volumen del aire y el 49.5 % en peso de la corteza terrestre.

La otro forma alotrópica del oxigeno es el ozono, cuya formula es o3 es mas reactivo que el oxigeno ordinario y se puede formar a partir de oxigeno en un arco eléctrico, como el descargador a distancia de un motor eléctrico, también se puede producir ozono por la acción de la luz ultravioleta sobre el oxigeno; esto explica el aroma " fresco del aire durante las tormentas eléctricas".

El azufre es el segundo elemento no metal del grupo. A temperatura ambiente es un sólido amarillo pálido que se encuentra libre en la naturaleza. Lo conocían los antiguos y se le menciona en el libro del génesis como piedra de azufre. Las moléculas de azufre contienen ocho átomos de azufre conectados a un anillo; su formula es s8 . El azufre tiene una importancia especial en la manufactura de neumáticos de hule y ácido sulfúrico, h2so4 . Otros compuestos de azufre son importantes para blanquear frutos y granos.

El selenio es un no metal que presenta interesantes propiedades y usos. La conductividad de este elemento aumenta con la intensidad de la luz. A causa de esta fotoconductividad, el selenio se a utilizado en los medidores de luz para cámaras fotográficas y en fotocopiadoras, pero la preocupación que origina su toxicidad ha hecho que disminuya su uso. El selenio también puede convertir la corriente eléctrica alterna en corriente directa; se ha utilizado en rectificadores, como los convertidores que se usan en los radios y grabadores portátiles, y en herramientas eléctricas recargables. El color rojo que el selenio imparte al vidrio lo hace útil en la fabricación de lentes para señales luminosas.

El telurio, tiene aspecto metálico, pero es un metaloide en el que predominan las propiedades no metálicas. Se emplea en semiconductores y para endurecer las placas de los acumuladores de plomo y el hierro colado. Se presenta en la naturaleza en diversos compuestos, pero no es abundante. El polonio es un elemento radiactivo poco común que emite radiación alfa y gama; su manejo es muy peligroso. Los usos de este elemento se relacionan con su radiactividad, y fue descubierto por Marie curie, quien le dio este nombre en honor a su natal Polonia.

Grupo VII a: los halógenos.

Comprenden el fluor (f), cloro (cl), bromo (br), yodo (i), y astato (at). El nombre de la familia halógeno provienen de las palabras griegas que significan "formadores de sales". Cada átomo de halógeno tiene siete electrones de valencia. Como elementos, los halógenos son todos diatomicos, tienen dos a tomos por molécula y son demasiado reactivos como para encontrarse libres en la naturaleza.

El primer halógeno, el fluor es un gas amarillo pálido, que es el elemento con mas carácter no metálico de todos. Tienen una fuerte tendencia a ganar un electrón para formar iones fluoruro, f . Tanto la madera como el hule arden en forma espontánea en fluor gaseoso. El fluor se emplea en la producción de compuestos con carbono llamados fluorocarbonos, como el freon-12, ccl2f2, que se utiliza como refrigerante en aparatos de aire acondicionado. El "resina anti-adherente" ó "fluoropolímero" (la empresa me prohibió poner el nombre comercial) es un fluorocarbono que es un polímero; tiene unidades moleculares de dos átomos de carbono y cuatro átomos de fluor que se repiten miles de veces en largas cadenas. Los compuestos de fluor también se utilizan para prevenir la caries dental y en ciertos lubricantes.

El cloro es un gas amarillo verdoso de olor irritante, que reacciona con casi todos los elementos. En concentraciones elevadas es muy venenoso, pero es bajas concentraciones puede salvar vidas: se emplea para purificar el agua potable, se emplea en la producción de papel, textiles, blanqueadores, medicamentos, insecticidas, pinturas, plásticos y muchos otros productos de consumo.

El bromo es el único elemento no metálico que es liquido a temperatura ambiente. Este liquido reactivo de color rojo sangre con un vapor rojo, es picante y venenoso; se debe manejar con extremo cuidado. El elemento se obtiene principalmente procesando salmuera extraída de los pozos de Arkansas y michigan. también se puede obtener bromo del agua de mar, pero esto ya no constituye una fuente importante del elemento. El bromo se utiliza en la producción de sustancias químicas para fotografía, colorantes y retardantes de flama, y en la manufactura de un amplia variedad de otras sustancias químicas, incluso productos farmacéuticos.

A temperatura ambiente el yodo es un sólido cristalino de color gris metálico. Cuando se calienta, el yodo sólido se sublima, es decir se transforma, directamente del estado sólido al gaseoso sin pasar por el estado liquido. El vapor de yodo presenta un hermoso color violeta brillante. El yodo que es menos abundante que otros halógenos, se obtiene de pozos de salmuera que hay en los campos petroleros de California y luisiana. El elemento esta presente también en ciertos vegetales marinos, como las algas, los compuestos de yodo se utilizan en productos químicos para fotografía y también en ciertos medicamentos. El cuerpo humano necesita un poco de yodo para elaborar la hormona tiroxina.

Todos los isótopos del astato son radioactivos. Se cree que la cantidad total de este elemento, existe en la corteza terrestre, es menor que 30 gramos (una onza). Muestras minúsculas de este inestable elemento se sintetizaron por primera vez en la universidad de California, berkeley, en 1940.

Grupo VIII a: los gases nobles.

Esta familia incluye al helio (he), neon (ne), argon (ar), criptón (kr), xenón (xe) y radon (rn). Los gases nobles existen en forma de átomos gaseosos monoatómicos (solos) que no tienden a participar en reacciones con otros elementos.

Todos loa gases nobles poseen un nivel energético externo lleno por completo de electrones (dos en el helio y ocho en todos los demás). Esta distribución estable de electrones explica la naturaleza no reactiva de estos elementos. Alrededor del 1 % de la atmósfera de la tierra es argon, y los otros gases nobles están presentes en cantidades muy pequeñas. A excepción del helio, que se extrae de pozos de gas natural, estos elementos se separan del aire licuado.

Durante la década de 1890, el químico escocés Sir William Ramsay y sus colaboradores, descubrieron la existencia de todos estos elementos excepto el helio y el radón. Cuando Janssen, astrónomo, empleaba un espectroscopio par estudiar un eclipse de sol en 1868, observo una nueva línea en el espectro. Se concluyo que el sol tenia un elemento aun no descubierto que mas tarde recibió el nombre de helio, derivado de la palabra griega helios, que significa el "sol". El primer descubrimiento de la presencia de helio en la tierra tuvo lugar en 1895, cuando Sir William Ramsay encontró una muestra de mineral de uranio producía helio gaseoso. El radón es un gas radioactivo descubierto en 1900 por Friedrich Dorn, físico quien encontró que se producía este elemento durante la descomposición radioactiva del elemento radio.

Debido a su baja densidad u naturaleza no inflamable, el helio se utiliza para inflar globos y dirigibles (zeppelines), y para mantener bajo presión el combustible liquido de los cohetes saturno. La propiedad que distingue a los gases nobles como grupo, es su calidad de "inertes". Por ejemplo, el helio y el argon se emplean en la soldadura del arco y en procesos metalúrgicos, para evitar la reacción de los materiales con el oxigeno y el nitrógeno del aire. Las bombillas de luz y los tubos fluorescentes se llenan con una mezcla de argon y nitrógeno, que provee una atmósfera inerte para prolongar la vida del filamento. El criptón es mas costoso, pero se utiliza para aumentar la eficiencia y brillantes de ciertas bombillas de lámpara de mano y de aditamentos de destello electrónico que se emplea en fotografía. La brillante luz naranja-rojiza de los anuncios de neon se produce cuando se hace pasar una corriente eléctrica a través de un tubo que contiene gas neon a baja presión. La naturaleza no reactiva de los gases nobles los hace muy valiosos.

Metales de transición.

Los metales de transición se localizan en la parte central de la tabla periódica y se les identifica con facilidad mediante un numero romano seguido de la letra "b" en muchas tablas. No hay que olvidar, sin embargo, que ciertas tablas periódicas emplean un sistema distinto de rótulos, en el que los primeros grupos de metales de transición están marcados como grupos "a" y los dos últimos grupos de metales de transición se identifican como grupos "b". Otras tablas no emplean la designación de "a" o "b".

En general, las propiedades de los metales de transición son bastantes similares. Estos metales son mas quebradizos y tienen puntos de fusión y ebullición mas elevados que los otros metales. Las densidades, puntos de fusión y puntos de ebullición de los metales de transición aumentan primero y luego disminuyen dentro de cada periodo, conforme aumenta el numero atómico. Esta tendencia es mas notoria en los metales de transición del sexto periodo. Los metales de transición son muchos menos reactivos que los metales alcalinos y alcalinotérreos. Así, aunque los metales alcalinos, como el sodio o el potasio, nunca se encuentran libres en la naturaleza, si se ha podido encontrar muestras relativamente puras de varios metales de transición, como oro, plata, hierro y manganeso.

Los metales de transición pueden perder dos electrones de valencia del subnivel s mas externo, además de electrones d retenidos con poco fuerza en el siguiente nivel energético mas bajo. Así un metal de transición en particular, puede perder un numero variable de electrones para formar iones positivos con cargas distintas. Por ejemplo, el hierro pueden formar el ion fe ²+ o el Ion Fe³+ se dice que el hierro tienen números de oxidación +2 y +3. Muchos compuestos de metales de transición presentan un colorido brillante gracias a un numero variable de electrones no apareados.

El cobre, la plata y el oro se les llama metales de acuñación. Los tres son buenos conductores de calor y electricidad. El cobre tiene un color rojizo característico, que poco a poco se oscurece conforme reacciona el metal con el oxigeno y los compuestos de azufre del aire. El cobre se emplea de manera extensa en aplicaciones eléctricas, monedas, tubería para agua y en aleaciones muy conocidas como el latón, el bronce y la plata sterling.

La plata con un brillante lustre metálico, es el mejor conductor tanto de calor como de la electricidad. Se emplea en monedas, joyería, contactos eléctricos, circuitos impresos, espejos, baterías, y productos químicos para fotografía. El oro es el mas maleable y dúctil de los metales. Es blando, pero por lo general contiene cantidades pequeñas de otros metales para hacer aleaciones que son mas resistentes. El oro no reacciona con el aire ni con la mayor parte de las sustancias químicas.

Entre otros metales de transición familiares están el cromo, hierro cobalto, níquel y zinc, del cuarto periodo de la tabla periódica. Estos metales se emplean mucho en diversas herramientas y en aplicaciones relacionadas. El hierro es el cuarto elemento mas abundante y es el metal menos costoso. Las aleaciones del hierro, conocidas como acero, contienen cantidades pequeñas de metales como cromo, manganeso y níquel, que le dan resistencia, dureza y durabilidad. El hierro que esta cubierto con una delgada capa de zinc se dice que esta galvanizado. Algo así como la tercera parte de todo el zinc que se produce de emplea para galvanizar alambre, clavos y metal laminado. El zinc es importante en la producción de latón, pilas secas y fundiciones a troquel para objetos automotrices y de ferretería.

Metales de transición internos.

Las dos filas de la parte inferior de la tabla periódica se conocen como metales de transición internos. Localiza el lantano con el numero atómico 57. La serie de elementos que siguen al lantano (los elementos con numero atómico del 58 al 71) se conocen como los lantánidos. Estos elementos tienen dos electrones externos en el subnivel 6s, mas electrones adicionales en el subnivel 4f. De manera similar, la serie de elementos que siguen al actinio (los elementos con numero atómico del 90 al 103) se conocen como actínidos, que tienen dos electrones externos en el subnivel 7s, mas electrones adicionales en el subnivel 5f. En el pasado, a los elementos de transición internos se les llamaba "tierras raras", pero esta no era una buena clasificación, pues la mayor parte no son tan raros como algunos otros elementos son, sin embargo muy difícil de separar.

Los lantánidos y actínidos poseen subniveles f parcialmente ocupados. Tienen propiedades tan similares que resulta difícil separarlos químicamente, aunque los métodos mas nuevos han permitido bajar los costos de purificación. Estos metales, a diferencia de los metales de transición, son blandos y maleables. Se emplean en piedras de encendedores de cigarrillos, lámparas de arco de carbono, laseres, agentes colorantes para el vidrio y compuestos que producen el intenso color rojo que se requiere para los cinescopios de televisión.

Elementos transuránicos.

El uranio, con el numero atómico 92, pertenece a la serie de los actínidos y tiene mas protones que cualquier otro elemento presente en la naturaleza. En 1940 se sintetizo un nuevo elemento con 93 protones en la universidad de California en berkeley. Este elemento, llamado neptunio, es el primer miembro de los elementos sintéticos con números atómicos mayores de 92. A estos elementos se les llama transuránicos, y todos ellos son radioactivos. El plutonio también se sintetizo en 1940; en la actualidad se produce como un producto secundario de reactores nucleares. Hasta ahora se han producido 16 elementos transuránicos; algunos de ellos son bastante estables, en tanto que otros sufren con facilidad una desintegración radioactiva. Los nombres de los elementos del 95 al 103 se derivaron de lugares y científicos importantes. Los elementos del 95, 97 y 98 recibieron su nombre en honor de América, berkeley y California, respectivamente. Los elementos con números atómicos 96, 99, 100, 101, 102, y 103 fueron bautizados, respectivamente, en honor a los Marie Curie, Pierre Curie, Albert Einstein, Enrico Fermi, Mendeleiev, Alfred Nobel y Ernest Orlando Lawrence (inventor del ciclotrón). En 1994 se propuso formalmente que el elemento 106 se llamara seaborgio (sg) en honor de Glenn Theodore Seaborg, por su trabajo con los elementos transuránicos.

El equipo que se requiere para producir nuevos elementos transuránicos se ha vuelto mas complejo, pero no hay razón para dudar de que sinteticen elementos adicionales, o de que se encuentren nuevos usos para los elementos naturales y sintéticos.



Propiedades

Metales

No metales

Electricidad

Muy buenos Conductores

Malos conductores

Calor

Muy buenos Conductores

Malos conductores

Brillo

Muy intenso

Opacos- brillo mate

Maleable

Buenos

Malos

Dúctiles

Buenos

Malos

Color

Plateado-dorado-gris-blanco

Variable

Oxidación

Reductores

Oxidante

Conductividad

Electropositivos

Electronegativos

Iones

Cationes

Aniones

Estado

Sólidos a excepción del Hg

Sólidos – líquidos-gases

LAS UNIONES QUÍMICAS

Enlace químico


Fuerza entre los átomos que los mantiene unidos en las moléculas. Cuando dos o más átomos se acercan lo suficiente, puede producirse una fuerza de atracción entre los electrones de los átomos ¡individuales y el núcleo de otro u otros átomos. Si esta fuerza es lo suficientemente grande para mantener unidos los átomos, se dice que se ha formado un enlace químico. Todos los enlaces químicos resultan de la atracción simultánea de uno o más electrones por más de un núcleo.

Tipos de enlace

Enlace metálico

• Enlace covalente

• Enlace iónico

Estructuras de Lewis, regla del octeto.

Lewis fue uno de los primeros en intentar proponer una teoría para explicar el enlace covalente, por ello creo notaciones abreviadas para una descripción más fácil de las uniones atómicas, que fueron las estructuras de Lewis.

Así lograríamos que todos los átomos unidos por enlaces covalentes tiendan a adquirir la estructura de los gases nobles, esta es la regla de Octeto.

Por ello se consideró que el anillo externo con ocho electrones es la configuración más estable de cada átomo.

Enlace iónico

Los compuestos iónicos resultan normalmente de la reacción de un metal, con un no metal. Los electrones se transfieren del metal al no metal, dando lugar a cationes y aniones, respectivamente. Estos se mantienen unidos por fuerzas electrostáticas fuertes llamadas enlaces jónicos.

Enlace covalente

Este enlace se produce entre dos no metales y la característica principal es la coparticipación de pares electrónicos. El enlace de tipo covalente se produce entre elementos no metálicos, o no metálicos con el hidrógeno, es decir entre átomos de electronegatividades semejantes y altas en general.

Unión covalente coparticipativa.

Se debe generalmente a la coparticipación de electrones entre los distintos átomos.

Enlace covalente coordinado o dativo

Es una variante de la unión covalente. Se presenta cuando en lugar de contribuir cada átomo con t electrón para formar el doblete o par electrónico, es un solo átomo quién completa el octeto del otro cediéndole un par electrónico. Llamándose respectivamente átomo dador y receptor

Enlace metálico.

El enlace metálico es el que mantiene unido a los átomos de los metales entre sí. Estos átomos se agrupan de forma muy cercana unos a otros, lo que produce estructuras muy compactas. Se trata c redes tridimensionales muy compactas.

PROPIEDADES DE LOS ENLACES.

A. Propiedades de las sustancias iónicas:

Las sustancias jónicas se encuentran en la naturaleza formando redes cristalinas, por lo tanto son sólidas.

• Su dureza es bastante grande, y tienen por lo tanto puntos de fusión y ebullición altos.

• Son solubles en disolventes polares como el agua.

• Cuando se tratan de sustancias disueltas tienen una conductividad alta.

B. Propiedades de los compuestos covalentes.

Los compuestos covalentes suelen presentarse en estado líquido o gaseoso aunque también pueden ser sólidos. Por lo tanto sus puntos de fusión y ebullición no son elevados.

• La solubilidad de estos compuestos es elevada en disolventes polares, y nula su capacidad conductora.

• Los sólidos covalentes macromoleculares, tienen altos puntos de fusión y ebullición, son duros, malos conductores y en general insolubles.


C. Los enlaces metálicos:

• Suelen ser sólidos a temperatura ambiente, excepto el mercurio, y sus puntos de fusión y ebullición varían notablemente.

• Las conductividades térmicas y eléctricas son muy elevadas.

• Presentan brillo metálico.

• Son dúctiles y maleables.

• Pueden emitir electrones cuando reciben energía en forma de calor.


Valencia
En la mayoría de los átomos, muchos de los electrones son atraídos con tal fuerza por sus propios núcleos que no pueden interaccionar de forma apreciable con otros núcleos. Sólo los electrones de exterior de un átomo pueden interaccionar con dos o más núcleos. A éstos se les llama electrones de valencia


QUÍMICA I Enlace Químico


Imprimir





Prof. ERNESTO G. SCIARINI

egsciarini@gmail.com




Estructura atómica

Cada elemento químico está constituido por unidades más pequeñas denominadas átomos. Cada átomo está formado por un núcleo central y lo más capas de electrones. Dentro del núcleo residen partículas subatómicas: protones (de carga positiva) y neutrones (partículas del mismo peso, pero sin carga).
El número de protones del núcleo es característico de cada elemento y es llamado número atómico, Ej: Hidrógeno: 1, Carbono: 6, Fósforo : 15. Sin embargo, diferentes átomos de un mismo elemento pueden tener distinto número de neutrones en el núcleo, llamándose isótopos.

Los electrones giran alrededor del núcleo en regiones del espacio denominadas órbitas, los átomos grandes albergan a varias órbitas o capas de electrones, el orbital más externo se llama la capa de valencia, porque determina cuantos enlaces puede formar un átomo. Debido a su repulsión mutua, solo un determinado número de electrones puede ocupar el espacio cercano al núcleo, la capa más cercana solo puede tener dos electrones, la segunda capa puede tener hasta 8 e- en varios orbitales.



Así como los átomos son las menores partículas de un elemento, una molécula es la menor partícula de un compuesto; consta de dos o más átomos, iguales o diferentes, que se mantienen unidos mediante las interacciones o enlaces de los electrones de las capas mas externas. Los principios básicos de la reactividad atómica son:
un átomo es estable (no reaccionará con otros) cuando su capa externa de electrones esté completamente ocupada o completamente vacía.
un átomo es reactivo cuando su capa externa de electrones externa solo está parcialmente llena, y puede lograr estabilidad al perder electrones, al ganarlos o compartirlos con otro átomo, esto da como resultado fuerzas llamadas enlaces químicos que mantiene juntos los átomos en la molécula. Los enlaces pueden ser iónicos o covalente

Son fuerzas que permiten la unión entre átomos (interatómicos) o entre moléculas (intermoleculares).Los átomos se unen entre sí para formar moléculas mediante fuerzas de enlace. Los tipos fundamentales de enlace son el iónico, el covalente y el metálico. A continuación se describen cada uno de los tipos de enlace y sus características principales.

Enlaces iónicos:

Este enlace se produce entre un metal y un no metal, y se caracteriza por la transferencia de electrones, donde el metal tiende a ceder electrones y el no metal tiende a recibirlos hasta completar 8 electrones en la última capa, por la regla del octeto.Es necesario que uno de los elementos pueda ganar electrones y el otro perderlo, y como se ha dicho anteriormente este tipo de enlace se suele producir entre un no metal (electronegativo) y un metal (electropositivo).Un ejemplo de sustancia con enlace iónico es el cloruro sódico. En su formación tiene lugar la transferencia de un electrón del átomo de sodio al átomo de cloro. Las configuraciones electrónicas de estos elementos después del proceso de ionización son muy importantes, ya que lo dos han conseguido la configuración externa correspondiente a los gases nobles, ganando los átomos en estabilidad.


Por ejemplo, durante la reacción del sodio con el cloro:
sodio (en la izquierda) pierde su única valencia de electrones al cloro (a la derecha),








resultando en un ión de sodio cargado positivamente (izquierda) y un ión de cloro cargado negativamente (derecha).














Características:

  • Son solubles en agua.
  • Se ioizan al ponerse en contacto con el agua y conducen la corriente eléctrica.
  • Cuando están fundidos a elevadas temperaturas también conducen la corriente eléctrica.
  • Son los enlaces más fuertes que existen.

Electronegatividad:

  • Es la capacidad que tiene un elemento para ganar electrones. Esta electronegatividad aumenta en la Tabla periódica en los periodos de abajo hacia arriba y en los grupos de izquierda a derecha.
  • Cuando la diferencia de electronegatividad es mayor a 1.7 es un enlace iónico y si es menor o igual que 1.7, entonces es un enlace covalente.
  • Si el carácter iónico porcentual es mayor que el 50% será enlace iónico, y si el carácter iónico porcentual es menor que el 50% será enlace covalente.

Enlace Covalente

Lewis expuso la teoría de que todos los elementos tienen tendencia a conseguir configuración electrónica de gas noble (8 electrones en la última capa). Elementos situados a la derecha de la tabla periódica ( no metales ) consiguen dicha configuración por captura de electrones; elementos situados a la izquierda y en el centro de la tabla ( metales ), la consiguen por pérdida de electrones. De esta forma la combinación de un metal con un no metal se hace por enlace iónico; pero la combinación de no metales entre sí no puede tener lugar mediante este proceso de transferencia de electrones; por lo que Lewis supuso que debían compartirlos.

Es posible también la formación de enlaces múltiples, o sea, la compartición de más de un par de electrones por una pareja de átomos. En otros casos, el par compartido es aportado por sólo uno de los átomos, formándose entonces un enlace que se llama coordinado o dativo.
Este enlace se produce entre dos no metales y la característica principal es la compartición de pares electrónicos.

Enlace Covalente Polar

Se produce por la unión de dos no metales idénticos y por lo tanto la diferencia de electronegatividades debe ser igual a cero.

Enlace Covalente Coordinado o Dativo

Se produce entre dos no metales y solamente uno de ellos aporta con el par de electrones, pero los dos lo comparten.

Enlace Múltiple

Es propio de compuestos que tienen enlace simple, doble y triple


Fuerzas intermoleculares

A diferencia que sucede con los compuestos iónicos, en las sustancias covalentes existen moléculas individualizadas. Entre estas moléculas se dan fuerzas de cohesión o de Van der Waals, que debido a su debilidad, no pueden considerarse ya como fuerzas de enlace. Hay varios tipos de interacciones: Fuerzas de orientación (aparecen entre moléculas con momento dipolar diferente), fuerzas de inducción (ion o dipolo permanente producen en una molécula no polar una separación de cargas por el fenómeno de inducción electrostática) y fuerzas de dispersión (aparecen en tres moléculas no polares).


Propiedades de los compuestos covalentes

Las fuerzas de Van der Waals pueden llegar a mantener ordenaciones cristalinas, pero los puntos de fusión de las sustancias covalentes son siempre bajos, ya que la agitación térmica domina, ya a temperaturas bajas, sobre las débiles fuerzas de cohesión. La mayor parte de las sustancias covalentes, a temperatura ambiente, son gases o líquidos de punto de ebullición bajo (por ejemplo el agua). En cuanto a la solubilidad, puede decirse que, en general, las sustancias covalentes son solubles en disolventes no polares y no lo son en disolventes polares. Se conocen algunos sólidos covalentes prácticamente infusibles e insolubles, que son excepción al comportamiento general descrito. Un ejemplo de ellos es el diamante. La gran estabilidad de estas redes cristalinas se debe a que los átomos que las forman están unidos entre sí mediante enlaces covalentes. Para deshacer la red es necesario romper estos enlaces, los cual consume enormes cantidades de energía


Electrovalencia y covalencia

Teniendo presenta las teorías de los enlaces iónicos y covalentes, es posible deducir la valencia de un elemento cualquiera a partir de su configuración electrónica.

  • La electrovalencia, valencia en la formación de compuestos iónicos, es el número de electrones que el átomo tiene que ganar o perder para conseguir la configuración de los gases nobles.
  • La covalencia, número de enlaces covalentes que puede formar un átomo, es el número de electrones desapareados que tiene dicho átomo. Hay que tener presente que un átomo puede desaparecer sus electrones al máximo siempre que para ello no haya de pasar ningún electrón a un nivel energético superior.

Enlace Metálico

Es propio de los metales y de sus aleaciones, y se caracteriza por la presencia de un enrejado cristalino que tiene nodos cargados positivamente y una nube electrónica permite la conducción de la corriente eléctrica y del calor.

Los elementos metálicos sin combinar forman redes cristalinas con elevado índice de coordinación. Hay tres tipos de red cristalina metálica: cúbica centrada en las caras, con coordinación doce; cúbica centrada en el cuerpo, con coordinación ocho, y hexagonal compacta, con coordinación doce. Sin embargo, el número de electrones de valencia de cualquier átomo metálico es pequeño, en todo caso inferior al número de átomos que rodean a un dado, por lo cual no es posible suponer el establecimiento de tantos enlaces covalentes.